Acta Crystallographica Section C
Crystal Structure

1:2 Complexes of chloranilic acid with pyrazole and imidazole, and the acetonitrile solvate of a $1: 1$ complex with imidazole

Hiroyuki Ishida* and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
Received 9 October 2000
Accepted 11 January 2001
2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) forms $X-\mathrm{H} \cdots Y(X, Y=\mathrm{N}$ or O$)$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with pyrazole and imidazole to afford bis(pyrazolium) dichloroanilate and bis(imidazolium) dichloroanilate, (I) and (II), both $2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$, and imidazolium chloroanilate acetonitrile solvate, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+}$.$\mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, (III). Their crystal structures demonstrate three novel supramolecular architectures based on supramolecular synthons to build a ladder, (I), a two-dimensional network, (II), and a flat ribbon, (III).

Comment

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone, a strong dibasic acid endowed with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with polarizable cations. In fact, our crystallographic studies on 1:1 and 1:2 complexes of chloranilic acid (CLA) with amines revealed various types of hydrogen-bonding patterns formed between CLA and amine, as well as between CLAs (Ishida \& Kashino, 1999a,b,c, 2000). Recently, Zaman et al. $(1999,2000)$ synthesized $1: 1$ complexes of CLA with dipyridyl derivatives [4,4'bipyridine, 1,2-bis(2-pyridyl)ethylene, and 2,2'-, 3, 3^{\prime} - and 4,4dipyridylacetylenes] and revealed the crystal structures by X-ray analysis. The structures of the complexes exhibit supramolecular architectures, such as linear chains, zigzag tapes and square grids, which are composed of supramolecular synthons (Desiraju, 1995, 1997; Nangia \& Desiraju, 1998), (1) and (2), formed by asymmetric bifurcated intermolecular hydrogen bonds.

Here, we have used pyrazole (PYZ) and imidazole (IMZ) as counter-cations for CLA and realised molecular networks based on hydrogen bonds in the $1: 2$ complexes of CLA with pyrazole and imidazole, $2[\mathrm{PYZ}]^{+} \cdot[\mathrm{CLA}]^{2-}, \quad(\mathrm{I})$, and $2[\mathrm{IMZ}]^{+} \cdot[\mathrm{CLA}]^{2-}$, (II), and the $1: 1$ complex with imidazole acetonitrile monosolvate, $[\mathrm{IMZ}]^{+} \cdot[\mathrm{CLA}]^{-} \cdot \mathrm{CH}_{3} \mathrm{CN}$, (III). The
structures of these crystals demonstrate three unique supramolecular assemblies based on synthons (1) and (2) to build a ladder, (I), a two-dimensional network, (II), and a flat ribbon, (III). This paper describes the new robust motifs in the crystal structures composed of simple azoles.

(I)

(II)

$\cdot \mathrm{CH}_{3} \mathrm{CN}$
(III)

The asymmetric units of (I), (II) and (III) are composed of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot 0.5 \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \cdot 0.5 \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} .-$ $\mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, respectively. In all three complexes, asymmetric interionic hydrogen bonds between the N atoms of the cation and the two O atoms of the anion are observed. In addition, short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed between the cation and the anion. In (I), the CLA ion forms a ladder running parallel to the b axis, both sides of which are connected by pyrazolium ions related by an inversion center via an $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ hydrogen bond and an asymmetric bifurcated $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bond (Fig. 1 and Table 2). The dihedral angle between the planes of the anion and the cation is 111°.

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I) showing the atomic labelling and an anion ladder held by cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. Hydrogen bonds are indicated by dashed lines (the symmetry codes are as in Table 2).

Figure 2
ORTEP-3 (Farrugia, 1997) drawing of (II) showing the atomic labelling and hydrogen-bonding scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. Hydrogen bonds are indicated by dashed lines [the symmetry codes are as in Table 4 with the addition of (iii) $1+x, \frac{1}{2}-$ $\left.y,-\frac{1}{2}+z\right]$.

In (II), the anions and cations are connected by a bifurcated $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bond, and a short $\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{O} 2$ hydrogen bond (Fig. 2 and Table 4), forming a two-dimensional hydrogen-bond network parallel to the (102) plane (Fig. 3). The dihedral angle between the planes of the anion and the cation is 146°. In (III), the CLA ion acts as a hydrogen donor as well as an acceptor. All constituent molecules are planar and parallel to the (101) plane and the imidazolium ion and the two anions are connected by an $\mathrm{N} 1-$ $\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bond and a bifurcated $\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 3$ hydrogen bond (Fig. 4). Acetonitrile also

Part of the crystal structure of (II) showing a two-dimensional hydrogenbonded network formed by anions and cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which are indicated by dashed lines.
connects the anions through a weak $\mathrm{C} 11-\mathrm{H} 7 \cdots \mathrm{Cl} 2$ interaction and an $\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{~N} 3$ hydrogen bond. Atom H1 also participates in an intramolecular $\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bond (Table 6). The C11‥O3 [3.751 (4) Å] and H7‥O3 [2.91 (4) \AA] distances are long but the $\mathrm{C} 11-\mathrm{H} 7 \cdots \mathrm{O} 3$ angle of $160(4)^{\circ}$ is essentially linear, suggesting that a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Desiraju \& Steiner, 1999) exists between the anion and the acetonitrile molecule.

Figure 4
ORTEP-3 (Farrugia, 1997) drawing of a molecular ribbon of (III) with the atomic labelling. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. Hydrogen bonds are indicated by dashed lines (the symmetry code is as in Table 6).

Experimental

Prismatic crystals of (I) and (II) were obtained by slow evaporation from aqueous solutions of chloranilic acid with pyrazole or imidazole (molar ratio 1:2) at room temperature. Compound (III) was prepared by reacting imidazole and chloranilic acid (molar ratio 1:1) in acetonitrile and prismatic crystals were obtained by recrystallization from a methanol solution.

Compound (I)

Crystal data

$2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=345.14$
Monoclinic, $P{ }_{2} / c$
$a=8.043$ (3) A
$b=5.459$ (3) \AA
$c=15.740(4) \AA$
$\beta=92.73$ (2) ${ }^{\circ}$ 。
$V=690.3(4) \AA^{3}$
$Z=2$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scans
(North et al., 1968)
$T_{\text {min }}=0.77, T_{\text {max }}=0.86$
2127 measured reflections
1591 independent reflections
1299 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.050$
$w R\left(F^{2}\right)=0.076$
$S=1.43$
1590 reflections
121 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00019\left|F_{o}\right|^{2}\right]$
$D_{x}=1.660 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.9-12.5^{\circ}$
$\mu=0.494 \mathrm{~mm}^{-1}$
$T=292 \mathrm{~K}$
Prismatic, brown
$0.45 \times 0.40 \times 0.30 \mathrm{~mm}$
$R_{\text {int }}=0.018$
$\theta_{\max }=27.5^{\circ}$
$h=-1 \rightarrow 10$
$k=0 \rightarrow 7$
$l=-20 \rightarrow 20$
3 standard reflections
\quad every 97 reflections
intensity decay: none
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen (1967)
Extinction coefficient:
$3.23(8) \times 10^{-5}$

Table 1
Selected geometric parameters (Å) for (I).

$\mathrm{Cl}-\mathrm{C} 2$	$1.7409(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.403(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.247(2)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.541(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.2537(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.390(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.335(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.366(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.333(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.376(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.336(2)$		

Symmetry code: (i) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.88(3)$	$1.82(3)$	$2.689(2)$	$168(3)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots 2^{\mathrm{i}}$	$0.88(3)$	$2.42(3)$	$2.916(2)$	$116(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.91(2)$	$1.74(2)$	$2.638(2)$	$167(2)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

Compound (II)

Crystal data

$2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$
$D_{x}=1.615 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=345.14$
Monoclinic, $P 2_{1} / c$
$a=7.547(2) \AA$
$b=8.1565$ (15) \AA
$c=11.750$ (4) \AA
$\beta=101.10$ (3) ${ }^{\circ}$
$V=709.7$ (3) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.7-12.2^{\circ}$
$\mu=0.481 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prismatic, brown
$0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer
$R_{\text {int }}=0.023$
$\omega-2 \theta$ scans
Absorption correction: ψ scans (North et al., 1968)
$T_{\text {min }}=0.85, T_{\text {max }}=0.91$
2141 measured reflections
1634 independent reflections
1172 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.01$
$R(F)=0.051$
$w R\left(F^{2}\right)=0.073$
$S=1.35$
1634 reflections
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen (1967)
121 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00011\left|F_{o}\right|^{2}\right]$

Table 3
Selected geometric parameters (\AA) for (II).

$\mathrm{Cl}-\mathrm{C} 2$	$1.738(2)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.364(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.243(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.410(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.258(2)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.540(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.315(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.385(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.362(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.335(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.315(3)$		

Symmetry code: (i) $2-x, 1-y, 1-z$.

Table 4
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.88(3)$	$1.98(3)$	$2.790(2)$	$152(3)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(3)$	$2.30(3)$	$2.924(2)$	$127(2)$
N2-H3 $\cdots \mathrm{O}^{2 i}$	$0.99(3)$	$1.72(3)$	$2.712(2)$	$175(3)$

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x-1, \frac{1}{2}-y, \frac{1}{2}+z$.

Compound (III)

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=318.12$
Triclinic, $P \overline{1}$
$a=9.3895$ (19) \AA
$b=9.628$ (2) A
$c=8.214$ (2) \AA
$\alpha=95.86(2)^{\circ}$
$\beta=99.82(2)^{\circ}$
$\gamma=111.156(16)^{\circ}$
$V=671.4$ (3) \AA^{3}
$Z=2$
$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.7-12.3^{\circ}$
$\mu=0.499 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prismatic, dark brown
$0.50 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer
$R_{\text {int }}=0.023$
$\omega-2 \theta$ scans
Absorption correction: ψ scans
(North et al., 1968)
$T_{\text {min }}=0.84, T_{\text {max }}=0.88$
3283 measured reflections
3093 independent reflections
2048 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.052$
$w R\left(F^{2}\right)=0.063$
$S=1.37$
3093 reflections
217 parameters

Table 5
Selected geometric parameters (\AA) for (III).

$\mathrm{C} 1-\mathrm{C} 2$	$1.7350(19)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.114(3)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.724(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.397(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.253(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.498(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.245(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.402(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.218(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.549(3)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.329(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.446(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.326(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.342(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.354(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.328(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.307(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.443(4)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.365(3)$		

Table 6
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{~N} 3$	$0.86(3)$	$2.08(3)$	$2.827(3)$	$145(3)$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.86(3)$	$2.11(3)$	$2.613(2)$	$116(2)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1$	$0.94(3)$	$1.78(3)$	$2.703(2)$	$171(3)$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(3)$	$1.89(3)$	$2.773(2)$	$154(2)$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(3)$	$2.31(3)$	$2.974(3)$	$127(2)$
$\mathrm{C} 11-\mathrm{H} 7 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.88(4)$	$2.81(5)$	$3.507(4)$	$136(4)$

Symmetry code: (i) $1+x, y, 1+z$.

H atoms were found in a difference Fourier map and were refined isotropically. Refined distances: $\mathrm{C}-\mathrm{H}=0.93$ (2) -0.99 (2) \AA and $\mathrm{N}-$ $\mathrm{H}=0.88$ (3) and 0.91 (2) \AA for (I); $\mathrm{C}-\mathrm{H}=0.92(2)-0.95(2) \AA$ and $\mathrm{N}-\mathrm{H}=0.88$ (3) and 0.99 (3) \AA for (II); C-H = 0.81 (3) -0.99 (3) \AA, $\mathrm{N}-\mathrm{H}=0.94$ (3) and 0.95 (3) \AA, and $\mathrm{O}-\mathrm{H}=0.86$ (3) \AA for (III).

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This work was supported by Grant-in-Aid for Scientific Research (B) No. 10440208 from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1164). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1481.
Desiraju, G. R. \& Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.
Ishida, H. \& Kashino, S. (1999a). Acta Cryst. C55, 1149-1152.
Ishida, H. \& Kashino, S. (1999b). Acta Cryst. C55, 1714-1717.
Ishida, H. \& Kashino, S. (1999c). Acta Cryst. C55, 1923-1926.
Ishida, H. \& Kashino, S. (2000). Acta Cryst. C56, e202-204.
Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Nangia, A. \& Desiraju, G. R. (1998). Top. Curr. Chem. 198, 57-95.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zaman, Md. B., Tomura, M. \& Yamashita, Y. (1999). Chem. Commun. pp. 9991000.

Zaman, Md. B., Tomura, M. \& Yamashita, Y. (2000). Org. Lett. 2, 273-275.

